
Int J Theor Phys (2008) 47: 44–60
DOI 10.1007/s10773-007-9477-0

Quantum Computational Logics and Possible
Applications

Maria Luisa Dalla Chiara · Roberto Giuntini ·
Roberto Leporini · Giuliano Toraldo di Francia

Received: 19 December 2006 / Accepted: 28 June 2007 / Published online: 28 July 2007
© Springer Science+Business Media, LLC 2007

Abstract In quantum computational logics meanings of formulas are identified with quan-
tum information quantities: systems of qubits or, more generally, mixtures of systems of
qubits. We consider two kinds of quantum computational semantics: (1) a compositional
semantics, where the meaning of a compound formula is determined by the meanings of
its parts; (2) a holistic semantics, which makes essential use of the characteristic “holistic”
features of the quantum-theoretic formalism. The compositional and the holistic semantics
turn out to characterize the same logic. In this framework, one can introduce the notion of
quantum-classical truth table, which corresponds to the most natural way for a quantum
computer to calculate classical tautologies.

Quantum computational logics can be applied to investigate different kinds of semantic
phenomena where holistic, contextual and gestaltic patterns play an essential role (from
natural languages to musical compositions).
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1 Introduction

Quantum computational logics are new forms of quantum logic, that arise as a natural logical
abstraction from the theory of quantum logical gates in quantum computation. In the stan-
dard semantics of these logics, formulas denote quantum information quantities (systems of
qubits, or, more generally, mixtures of systems of qubits), while the logical connectives are
interpreted as logical operations defined in terms of special quantum logical gates.

Let us first sum up some basic notions of quantum computation. Consider the two-
dimensional Hilbert space C

2, where any vector |ψ〉 is represented by a pair of com-
plex numbers. Let B(1) = {|0〉, |1〉} be the canonical orthonormal basis for C

2 such that
|0〉 = (0,1); |1〉 = (1,0).

Definition 1.1 (Qubit) A qubit is a unit vector |ψ〉 of the space C
2.

Hence, any qubit has the following form:

|ψ〉 = a0|0〉 + a1|1〉 (where a0, a1 ∈ C and |a0|2 + |a1|2 = 1).

From an intuitive point of view, a qubit can be regarded as a quantum variant of the clas-
sical notion of bit: a kind of “quantum perhaps”. In this framework, the two basis-elements
|0〉 and |1〉 represent the two classical bits 0 and 1, respectively. From a physical point of
view, a qubit represents a state of a single particle, carrying an atomic piece of quantum
information. In order to carry the information stocked by n qubits, we need of course a
compound system, consisting of n particles.

Definition 1.2 (Quregister) An n-qubit system (also called n-quregister) is a unit vector in
the n-fold tensor product Hilbert space ⊗n

C
2 := C

2 ⊗ . . . ⊗ C
2

︸ ︷︷ ︸

n-times

(where ⊗1
C

2 := C
2).

We will use x, y, . . . as variables ranging over the set {0,1}. At the same time, |x〉, |y〉, . . .
will range over the basis B(1). Any factorized unit vector |x1〉⊗ . . .⊗|xn〉 of the space ⊗n

C
2

will be called a classical register. We will also write |x1, . . . , xn〉 instead of |x1〉⊗ . . .⊗|xn〉.
The set B(n) of all classical registers is an orthonormal basis for the space ⊗n

C
2.

Quregisters are pure states: maximal pieces of information about the particles under con-
sideration. Both in quantum theory and in quantum information, one cannot help referring
also to mixed states (or mixtures), which represent pieces of information that are not max-
imal and might be enriched [8]. In the framework of quantum computation, mixed states
(mathematically represented by density operators of an appropriate Hilbert space) are also
called qumixes.

Definition 1.3 (Qumix) A qumix is a density operator of ⊗n
C

2 (where n ≥ 1).

Needless to say, quregisters correspond to particular qumixes that are pure states (i.e.
projections onto one-dimensional closed subspaces of a given ⊗n

C
n). We will indicate by

Q(⊗n
C

2) the set of all qureguisters of ⊗n
C

2, while D(⊗n
C

2) will denote the set of all den-
sity operators of ⊗nC2. Hence the two sets Q = ⋃∞

n=1 Q(⊗nC2) and D = ⋃∞
n=1 D(⊗nC2)

will represent the set of all possible quregisters and the set of all possible qumixes, respec-
tively.

For semantic aims, it is useful to distinguish the true from the false registers in any space
⊗n

C
2.
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Definition 1.4 (True and false registers) Let |x1, . . . , xn〉 be a register of ⊗n
C

2.

• |x1, . . . , xn〉 is called true iff xn = 1;
• |x1, . . . , xn〉 is called false iff xn = 0.

The idea is that any classical register corresponds to a classical truth-value that is de-
termined by its last element. Hence, in particular, the bit |1〉 corresponds to the truth-value
Truth, while the bit |0〉 corresponds to the truth-value Falsity.

On this basis, we can identify, in any space ⊗n
C

2, two special projection-operators (P (n)

1

and P
(n)

0 ) that represent, in this framework, the Truth-property and the Falsity-property, re-
spectively. The projection P

(n)

1 is determined by the closed subspace spanned by the set of all
true registers, while P

(n)

0 is determined by the closed subspace spanned by the set of all false
registers. As is well known, in quantum theory, projections have the role of mathematical
representatives of possible physical properties of the quantum objects under investigation.
Hence, it turns out that Truth and Falsity behave here as special cases of physical properties.

As a consequence, one can naturally apply the Born rule that determines the probability-
value that a quantum system in a given state satisfies a given property. Consider any qumix
ρ, which represents a possible state of a quantum system in the space ⊗n

C
2. By applying

the Born rule, we obtain that the probability-value that a physical system in state ρ satisfies
the Truth-property P

(n)

1 is the number tr(P
(n)

1 ρ) (where tr is the trace functional). This
suggests the following natural definition of the notion of probability of a given qumix.

Definition 1.5 (Probability of a qumix) For any qumix ρ ∈ D(⊗n
C

2), p(ρ) := tr(P
(n)

1 ρ).

From an intuitive point of view, p(ρ) represents the probability that the information
stocked by the qumix ρ is true. In the particular case where ρ corresponds to the qubit
|ψ〉 = a0|0〉 + a1|1〉, we obtain that p(ρ) = |a1|2.

Given a quregister |ψ〉, we will also write p(|ψ〉) instead of p(P|ψ〉), where P|ψ〉 is the
density operator represented by the projection onto the one-dimensional subspace spanned
by the vector |ψ〉.

An interesting relation connects qumixes with the real numbers in the interval [0,1]. Any
real number λ ∈ [0,1] uniquely determines a qumix ρ

(n)
λ (for any n ∈ N

+):

ρ
(n)
λ := (1 − λ)knP

(n)

0 + λknP
(n)

1

(where kn is a normalization coefficient). From an intuitive point of view, ρ
(n)
λ represents a

mixture of pieces of information that might correspond to the Truth with probability λ.
In quantum computation information is processed by quantum logical gates (briefly,

gates): unitary operators that transform quregisters into quregisters. Being unitary, gates
represent characteristic reversible logical operations. The canonical gates (which are stud-
ied in the literature) can be naturally generalized to qumixes. We will consider here the
following gates: the negation, the Petri–Toffoli gate and the square root of the negation.

Let us first describe these gates in the framework of quregisters.

Definition 1.6 (The negation) For any n ≥ 1, the negation on ⊗n
C

2 is the linear operator
Not(n) such that for every element |x1, . . . , xn〉 of the basis B(n):

Not(n)(|x1, . . . , xn〉) := |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

In other words, Not(n) inverts the value of the last element of any basis-vector of ⊗n
C

2.
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Definition 1.7 (The Petri–Toffoli gate) For any m ≥ 1 and any n ≥ 1 the Petri–Toffoli gate is
the linear operator T(m,n,1) defined on ⊗m+n+1

C
2 such that for every element |x1, . . . , xm〉 ⊗

|y1, . . . , yn〉 ⊗ |z〉 of the basis B(m+n+1):

T(m,n,1)(|x1, . . . , xm〉 ⊗ |y1, . . . , yn〉 ⊗ |z〉) := |x1, . . . , xm〉 ⊗ |y1, . . . , yn〉 ⊗ |xmyn � z〉,
where � represents the sum modulo 2.

One can easily show that both Not(n) and T(m,n,1) are unitary operators.
Consider now the set Q of all possible quregisters. The gates Not and T can be uniformly

defined on this set in the expected way:

Not(|ψ〉) := Not(n)(|ψ〉), if |ψ〉 ∈ ⊗n
C

2,

T(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := T(m,n,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉),
if |ψ〉 ∈ ⊗m

C
2, |ϕ〉 ∈ ⊗n

C
2 and |χ〉 ∈ C

2.

On this basis, a conjunction And, a disjunction Or, can be defined for any pair of qureg-
isters |ψ〉 and |ϕ〉:

And(|ψ〉, |ϕ〉) := T(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);
Or(|ψ〉, |ϕ〉) := Not(And(Not(|ψ〉),Not(|ϕ〉))).

Clearly, |0〉 represents an “ancilla” in the definition of And.
The gates we have considered so far are, in a sense, “semiclassical”. A quantum logical

behavior only emerges in the case where our gates are applied to superpositions. When
restricted to classical registers, such operators turn out to behave as classical (reversible)
truth-functions. We will now consider an important example of a genuine quantum gate that
transforms classical registers (elements of B(n)) into quregisters that are superpositions. This
gate is the square root of the negation.

Definition 1.8 (The square root of the negation) For any n ≥ 1, the square root of the nega-

tion on ⊗n
C

2 is the linear operator
√
Not

(n)
such that for every element |x1, . . . , xn〉 of the

basis B(n):

√
Not

(n)
(|x1, . . . , xn〉) := |x1, . . . , xn−1〉 ⊗ 1

2
((1 + i)|xn〉 + (1 − i)|1 − xn〉),

where i := √−1.

One can easily show that
√
Not

(n)
is a unitary operator. The basic property of

√
Not

(n)

is the following:

for any |ψ〉 ∈ ⊗n
C

2,
√
Not

(n)
(
√
Not

(n)
(|ψ〉)) = Not(n)(|ψ〉).

In other words, applying twice the square root of the negation means negating.

From a logical point of view,
√
Not

(n)
can be regarded as a “tentative partial negation”

(a kind of “half negation”) that transforms precise pieces of information into maximally
uncertain ones. For, we have:

p(
√
Not

(1)
(|1〉)) = 1

2
= p(

√
Not

(1)
(|0〉)).
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As expected, also
√
Not can be uniformly defined on the set R of all quregisters.

Interestingly enough, the gate
√
Not seems to represent a typically quantum logical

operation that does not admit any counterpart either in classical logic or in standard fuzzy
logics (see [4]).

The gates considered so far can be naturally generalized to qumixes [8]. When our gates
will be applied to density operators, we will write: NOT,

√
NOT, T, AND, OR (instead of

Not,
√
Not, T, And, Or).

Definition 1.9 (The negation) For any qumix ρ ∈ D(⊗nC2),

NOT(n)(ρ) := Not(n)ρNot(n).

Definition 1.10 (The square root of the negation) For any qumix ρ ∈ D(⊗n
C

2),

√
NOT

(n)
(ρ) := √

Not
(n)

ρ
√
Not

(n)∗
,

where
√
Not

(n)∗
is the adjoint of

√
Not

(n)
.

It is easy to see that for any n ∈ N
+, both NOT(n)(ρ) and

√
NOT

(n)
(ρ) are qumixes of

D(⊗n
C

2).

Definition 1.11 (The conjunction) Let ρ ∈ D(⊗m
C

2) and σ ∈ D(⊗n
C

2).

AND(m,n,1)(ρ, σ ) = T
(m,n,1)(ρ, σ,P

(1)

0 ) := T(m,n,1)(ρ ⊗ σ ⊗ P
(1)

0 )T(m,n,1).

Like in the quregister-case, the gates NOT,
√
NOT, T, AND, OR can be uniformly defined

on the set D of all qumixes.
An interesting preorder relation can be defined on the set D of all qumixes.

Definition 1.12 (Preorder) ρ 	 σ iff the following conditions hold:

(i) p(ρ) ≤ p(σ );
(ii) p(

√
NOT(σ )) ≤ p(

√
NOT(ρ)).

One immediately shows that 	 is reflexive and transitive, but not antisymmetric (coun-
terexamples can be easily found in D(C2)).

An equivalence relation can be then defined on D:

Definition 1.13 σ ≡ τ iff σ 	 τ and τ 	 σ .

One can prove that ≡ is a congruence relation with respect to the operations AND, NOT,√
NOT.

2 Quantum Trees

We consider here a minimal quantum computational language L that contains a privileged
atomic formula f (whose intended interpretation is the Falsity) and the following primitive
connectives: the negation (¬), the square root of the negation (

√¬), a ternary conjunction
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∧

(which corresponds to the Petri–Toffoli gate). For any formulas α and β , the expression
∧

(α,β, f) is a formula of L. In this framework, the usual conjunction α ∧ β is dealt with as
metalinguistic abbreviation for the ternary conjunction

∧

(α,β, f). We will use the follow-
ing metavariables: q, r, . . . for atomic formulas and α,β, . . . for formulas. The connective
disjunction (∨) is supposed to be defined via the de Morgan law (α ∨ β := ¬(¬α ∧ ¬β)).

Any formula α of L describes a quantum circuit that can be applied to an input, rep-
resented by a qumix living in a Hilbert space whose dimension depends on the linguistic
form of α. Let us first introduce some useful syntactical notions. By atomic complexity of
a formula α (indicated by At(α)) we mean the number of occurrences of atomic formulas
in α. For instance, At(¬∧

(q,¬q, f)) = 3. Since the atomic complexity of α determines the
dimension of the Hilbert space where a qumix representing information about α should live,
the space ⊗At(α)

C
2 will be also called the semantic space of α. We will briefly write Hα ,

instead of ⊗At(α)
C

2.
Any formula α can be naturally decomposed into its parts, giving rise to a special con-

figuration called the syntactical tree of α (indicated by STreeα).
Roughly, STreeα can be represented as a sequence of levels:

Levelk(α)

...

Level1(α),

where:

• each Leveli (α) (with 1 ≤ i ≤ k) is a sequence of subformulas of α;
• the bottom level (Level1(α)) consists of α;
• the top level (Levelk(α)) is the sequence of all atomic occurrences in α;
• for any i (with 1 ≤ i < k), Leveli+1(α) is the sequence obtained by dropping the princi-

pal connective in all molecular formulas occurring at Leveli (α), and by repeating all the
atomic formulas that possibly occur at Leveli (α).

As an example, consider the following formula: α = q ∧ ¬q = ∧

(q,¬q, f). The syntac-
tical tree of α is the following configuration:

Level3(α) = (q,q, f);
Level2(α) = (q,¬q, f);
Level1(α) =

(
∧

(q,¬q, f)
)

.

By Height of α (indicated by Height(α)) we mean the number of levels of the syntactical
tree of α. For instance, Height(

∧

(q,¬q, f)) = 3.

The syntactical tree of α (which represents a purely syntactical object) uniquely de-
termines a sequence of gates that are all defined on the semantic space of α. We will
call this gate-sequence the qubit tree of α. Consider a formula α such that At(α) = t and
Height(α) = k. Let Levelji (α) represent the j -th node of Leveli (α). Each Levelji (α) (where
1 ≤ i < Height(α)) can be naturally associated to a unitary operator Opj

i , according to the
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following operator-rule:

Op
j

i :=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

I (1) if Levelji (α) is an atomic formula;

Not(r) if Levelji (α) = ¬β and At(β) = r;√
Not

(r)
if Levelji (α) = √¬β and At(β) = r;

T(r,s,1) if Levelji (α) = ∧

(β, γ, f), At(β) = r and At(γ ) = s,

where I (1) is the identity operator of C
2.

On this basis, one can associate a gate Gα
i to each Leveli (α) (such that 1 ≤ i <

Height(α)):

Gα
i :=

|Leveli (α)|
⊗

j=1

Opj

i ,

where |Leveli (α)| is the length of the sequence Leveli (α).
Being the tensor product of unitary operators, every Gα

i turns out to be a unitary operator.
One can easily show that all Gα

i are defined on the same space, Hα .

Definition 2.1 (The qubit tree of α) The qubit tree of α (denoted by QTreeα) is the gate-
sequence

(Gα
1 , . . . ,Gα

Height(α)−1)

that is uniquely determined by the syntactical tree of α.

As an example, consider again the formula: α = ∧

(q,¬q, f). The qubit tree of α is
represented by the gate-sequence (Gα

1 ,Gα
2 ), where:

Gα
1 = T(1,1,1);

Gα
2 = I (1) ⊗ Not(1) ⊗ I (1).

As we have seen, qubit trees consist of unitary operators (which can be applied to qureg-
isters). The notion of qubit tree can be naturally generalized to qumixes. In such a case we
will speak of qumix trees, and we will call quantum tree either a qubit tree or a qumix tree.
Let (Gα

1 , . . . ,Gα
k−1) be the qubit tree of α. We can define the following sequence of functions

on the set D(Hα):

DGα
1 (ρ) = Gα

1 ρGα∗
1

...

DGα
k−1(ρ) = Gα

k−1ρGα∗
k−1.

One can easily prove that, for any ρ ∈ D(Hα) and for any i (1 ≤ i ≤ k − 1), DGα
i (ρ) is

a density operator of D(Hα). The sequence

QumTreeα = (DGα
1 , . . . ,D Gα

k−1)

will be called the qumix tree of α, while the elements of a qumix tree will be called qumix
gates. Apparently, all qumix gates are bijections. Hence, qumix trees (as well as qubit trees)
represent reversible information processes.
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Consider now a formula α and let (DGα
1 , . . . ,D Gα

k−1) be the qumix tree of α. Any choice
of a qumix ρ in Hα determines a sequence (ρk, . . . , ρ1) of qumixes of Hα , where:

ρk = ρ,

ρk−1 =D Gα
k−1(ρk),

...

ρ1 =D Gα
1 (ρ2).

The qumix ρk can be regarded as a possible input-information concerning the atomic
parts of α, while ρ1 represents the output-information about α, given the input-information
ρk . Each ρi corresponds to the information about Leveli (α), given the input-information
ρk . Any sequence of this kind will be called α-computation (with input ρk and with output
ρ1). Alternatively, we can also refer to the qubit tree (Gα

1 , . . . ,Gα
k−1) of α and define, in the

expected way, the notion of pure α-computation (with input |ψk〉 and with output |ψ1〉).
How to determine an information about the parts of α under a given input? It is natural

to apply the standard quantum-theoretic rule that determines the states of the parts of a
compound system.

Suppose that:

Leveli (α) = βi1 , . . . , βir .

We have:

Hα = Hβi1 ⊗ . . . ⊗Hβir .

We know that QumTreeα and the choice of an input ρk (in Hα) determine a sequence of
qumixes:

ρk � Levelk(α) = (q1, . . . ,qt ),

...

ρi � Leveli (α) = (βi1 , . . . , βir ),

...

ρ1 � Level1(α) = (α).

Consider redj (ρi), the reduced state of ρi with respect to the j -th subsystem.1 From a
semantic point of view, this state can be regarded as a contextual information about βij (the
subformula of α occurring at the j -th position at Leveli (α)) under the input ρk . Apparently,
a contextual information about a subformula is generally a mixture.

1We recall that redj (ρi ) is the unique density operator that satisfies the following condition: for any self-

adjoint operator Aj of Hβj ,

tr(redj (ρi )A
j ) = tr(ρi (I

1 ⊗ . . . ⊗ I j−1 ⊗ Aj ⊗ I j+1 ⊗ . . . ⊗ I r )),

(where Ih is the identity operator of Hβh ). As a consequence, ρi and redj (ρi ) are statistically equivalent
with respect to the j -th subsystem of the compound system described by ρi .
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An interesting situation arises when the qumix ρk , representing a global information
about the atomic parts of α, is an entangled pure state.2

As an example, consider the formula α = ¬∧

(q,¬q, f) (which represents an example
of the noncontradiction principle formalized in the quantum computational language). The
input-information might be the following entangled state:

|ψ4〉 = 1√
2
|110〉 + 1√

2
|000〉 � Level4(α) = (q,q, f).

The reduced states of |ψ4〉 turn out to be the following:

red1

(

1√
2
|110〉 + 1√

2
|000〉

)

= 1

2
P

(1)

0 + 1

2
P

(1)

1 = red2

(

1√
2
|110〉 + 1√

2
|000〉

)

red3

(

1√
2
|110〉 + 1√

2
|000〉

)

= P
(1)

0 .

Hence, the contextual information about both occurrences of q is the (proper) mixture
1
2 P

(1)

0 + 1
2P

(1)

1 . At the same time, the contextual information about f is projection P
(1)

0 (rep-
resenting the Falsity).

Quantum trees can be naturally regarded as examples of quantum circuits that compute
outputs under given inputs. Since both qubit trees and qumix trees are determined by the
syntactical tree of a given formula, one can also say that any formula α of the quantum
computational language plays the role of an intuitive and “economical” description of a
quantum circuit, called α-quantum circuit.

3 Compositional and Holistic Quantum Computational Semantics

Two kinds of quantum computational semantics have been investigated: a compositional and
a holistic semantics. In the compositional semantics, the meaning of a molecular formula is
determined by the meanings of its parts (like in classical logic). In this framework, the input-
information about the top level of the syntactical tree of a formula α is always associated
to a factorized state ρ1 ⊗ . . . ⊗ ρt , where t is the atomic complexity of α and ρ1, . . . , ρt are
qumixes of C

2. As a consequence, the meaning of a molecular α cannot be a pure state, if
the meanings of some atomic parts of α are proper mixtures.

The holistic quantum compositional semantics3 is based on a more “liberal” assumption:
the input information about the top-level of the syntactical tree of α can be represented by
any qumix “living” in the semantic space of α. As a consequence, the meanings of all levels
of STreeα are not, generally, factorized states.

Suppose that:

Leveli (α) = (β1, . . . , βr).

2As is well known, the basic features of an entangled state |ψ〉 are the following: (1) |ψ〉 is a maximal infor-
mation (a pure state) that describes a compound physical system S; (2) the pieces of information determined
by |ψ〉 about the parts of S are, generally, non-maximal (proper mixtures). Hence, the information about the
whole is more precise than the information about the parts.
3See [5]; in [4] we have presented a weaker version of the holistic semantics.
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As we have seen, the space Hα can be naturally regarded as the Hilbert space of a
compound physical system consisting of r parts (mathematically represented by the spaces
Hβ1 , . . . ,Hβr ), where each part may be compound. On this basis, for any qumix ρi (associ-
ated to Leveli (α)) and for any node Levelji (α), we can consider the reduced state redj (ρi)

with respect to the j -th subsystem of the system described by ρi . From an intuitive point of
view, redj (ρi) describes the j -th subsystem on the basis of the global information ρi . Since
Leveli (α) = (β1, . . . , βr), the qumix redj (ρi) (which is a density operator of the space Hβj )
represents a possible meaning of the sentence βj .

We can now introduce the basic definitions of the holistic semantics. The main concept
is the notion of holistic quantum computational model: a function Hol that assigns to any
formula α of the quantum computational language a global meaning, which cannot be gen-
erally inferred from the meanings of the parts of α. Of course (like in the standard semantic
approaches), the function Hol shall respect the logical form of α.

In order to define the concept of holistic quantum computational model, we will first
introduce the notions of atomic holistic model and of tree holistic model.

Definition 3.1 (Atomic holistic model) An atomic holistic model is a map HolAt that asso-
ciates a qumix to any formula α of L , satisfying the following conditions:

(1) HolAt(α) ∈ D(Hα);
(2) Let At(α) = n and LevelHeigth(α) = q1, . . . ,qn. Then,

(2.1) if qj = f, then redj (HolAt(α)) = P0;
(2.2) if qj and qh are two occurrences in α of the same atomic formula, then

redj (HolAt(α)) = redh(HolAt(α)).

Apparently, HolAt(α) represents a global interpretation of the atomic formulas occur-
ring in α. At the same time, redj (HolAt(α)), the reduced state of the compound system (de-
scribed by HolAt(α)) with respect to the j -th subsystem, represents a contextual meaning of
qj with respect to the global meaning HolAt(α). Conditions (2.1) and (2.2) guarantee that
HolAt(α) is well behaved. For, the contextual meaning of f is always the Falsity, while two
different occurrences (in α) of the same atomic formula have the same contextual meaning.

The map HolAt (which assigns a meaning to the top-level of the syntactical tree of any
sentence α) can be naturally extended to a map HolTree that assigns a meaning to each level
of the syntactical tree of any α, following the prescriptions of the qumix tree of α.

Consider a formula α such that:

QumTreeα = (DGα
1 , . . . ,D Gα

Heigth(α)−1).

The map HolTree is defined as follows:

HolTree(LevelHeigth(α)) = HolAt(α),

HolTree(Leveli (α)) =D Gα
i (Hol

Tree(Leveli+1(α))

(where Heigth(α) > i ≥ 1).
On this basis, one can naturally define the notion of holistic (quantum computational)

model of L.

Definition 3.2 (Holistic model) A map Hol that assigns to any formula α a qumix of the
space Hα is called a holistic (quantum computational) model of L iff there exists an atomic
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holistic model HolAt s.t.:

Hol(α) = HolTree(Level1(α)),

where HolTree is the extension of HolAt .

Given a formula γ , Hol determines the contextual meaning, with respect to the context
Hol(γ ), of any occurrence of a subformula β in γ .

Definition 3.3 (Contextual meaning of a node) Let β be a subformula of γ occurring at the
j -th position of the i-th level of the syntactical tree of γ . We indicate by β[ij ] the node of
STreeγ corresponding to such occurrence. The contextual meaning of β[ij ] with respect to
the context Hol(γ ) is defined as follows:

Holγ (β[ij ]) = redj (HolTree(Leveli (γ ))).

Hence, we have:

Holγ (γ ) = HolTree(Level1(γ )) = Hol(γ ).

Suppose that β[ij ] and β[hk ] are two nodes of the syntactical tree of γ , representing two
occurrences of the same subformula β . One can show that:

Holγ (β[ij ]) = Holγ (β[hk ]).
In other words, two different occurrences of one and the same subformula in a formula

γ receive the same contextual meaning with respect to the context Hol(γ ).
On this basis, one can define the contextual meaning of a subformula β of γ , with respect

to the context Hol(γ ):

Holγ (β) := Holγ (β[ij ]),
where β[ij ] is any occurrence of β at a node of STreeγ .

Suppose now that β is a subformula of two different formulas γ and δ. Generally, we
have:

Holγ (β) �= Holδ(β).

In other words, formulas may receive different contextual meanings in different contexts!
Apparently, Holγ is a partial function that only assigns meanings to the subformulas

of γ . Given a formula γ , we will call the partial function Holγ a contextual holistic model
of the language.

In this framework, compositional models can be described as limit-cases of holistic mod-
els.

Definition 3.4 (Compositional model) A model Hol is called compositional iff the follow-
ing condition is satisfied for any formula α: HolAt(α) = Hol(q1) ⊗ . . . ⊗ Hol(qt ), where
q1, . . . ,qt are the atomic formulas occurring in α.

As expected, unlike holistic models, compositional models are context-independent. Sup-
pose that β is a subformula of two different formulas γ and δ. We have:

Holγ (β) = Holδ(β) = Hol(β).
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The notion of logical consequence in the framework of the holistic quantum computa-
tional semantics represents a reasonable variant of the standard notions of logical conse-
quence.

Let us first define the notion of consequence in a given contextual model.

Definition 3.5 (Consequence in a given contextual model Holγ ) A formula β is a conse-
quence of a formula α in a given contextual model Holγ (α |=Holγ β) iff

1. α and β are subformulas of γ ;
2. Holγ (α) 	 Holγ (β) (where 	 is the preorder relation defined in 1.12).

Definition 3.6 (Logical consequence (in the holistic semantics)) A formula β is a conse-
quence of a formula α (in the holistic semantics) iff for any formula γ such that α and β are
subformulas of γ and for any Hol,

α |=Holγ β.

We call HQCL the logic that is semantically characterized by the logical consequence
relation we have just defined. Hence, α |=HQCL β iff for any formula γ such that α and β

are subformulas of γ and for any Hol,

α |=Holγ β.

At the same time, by compositional quantum computational logic (CQCL) we mean the
logic that is semantically characterized by the class of all compositional quantum computa-
tional models. Hence, α |=CQCL β iff for any compositional model Hol,

α |=Hol β.

Although the basic ideas of the holistic and of the compositional quantum computational
semantics are quite different, one can prove that HQCL and CQCL are the same logic
(see [5]). In other words, for any formulas α and β ,

α |=HQCL β iff α |=CQCL β.

This means that the logics (formalized in our “poor” sentential languages) are not able to
capture the difference between an analytical and a holistic semantic procedure.

Since HQCL= CQCL, we will simply speak of quantum computational logic (denoted
by QCL). One is dealing with a nonstandard form of unsharp quantum logic, where the non-
contradiction principle breaks down (�QCL ¬(α∧¬α)), while conjunction is not idempotent
(α �QCL α ∧α). Interestingly enough, distributivity is here violated “in the wrong direction”
with respect to orthodox quantum logic. For, α ∧ (β ∨ γ ) |=QCL (α ∧ β) ∨ (α ∧ γ ), but not
the other way around!

4 A Quantum Computational Description of Classical Truth-Tables

The quantum computational semantics (mainly in its holistic version) seems to represent a
new theory of meanings that might find interesting applications also to other fields, quite far
from microphysics.
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We will first consider a logical application: a natural synthetic description of classical
truth-tables. Consider the classical sublanguage LC of L, whose only connectives are the
classical (reversible) connectives ¬ and

∧

. Let α be a formula of LC with atomic occur-
rences q1, . . . ,qt .

Definition 4.1 A classical register |x1, . . . , xt 〉 is called a classical truth-value assignment
for α iff there is an atomic holistic model HolAt of the language LC s.t.

HolAt(α) = |x1, . . . , xt 〉.

Apparently, any classical truth-value assignment for α represents a possible (classical) in-
terpretation of the top level of the syntactical tree of α (the sequence of the atomic formulas
occurring in α).

Let Valα be the set of all possible classical truth-value assignments for α and let nα be its
cardinal number.

Definition 4.2 A quregister |ψ〉 of Hα is called a classical truth-value assignment system
for α iff

|ψ〉 =
∑

{

1√
nα

|x1, . . . , xt 〉 : |x1, . . . , xt 〉 ∈ Valα
}

.

Clearly, any formula α has a unique classical truth-value assignment system (indicated by
|ψα

C〉). Unlike classical truth-value assignments (which are classical registers), the classical
truth-value assignment system for α is a genuine superposition, where all amplitudes are the
same number ( 1√

nα ).
On this basis, we can naturally define the notion of quantum-classical truth table of α.

Definition 4.3 (Quantum-classical truth table) The quantum-classical truth table of α is the
pure α-computation with input |ψα

C〉.

Suppose that QubTreeα = (Gα
k−1, . . . ,G

α
1 ). Then, the quantum-classical truth table of α

is the following sequence of quregisters living in the semantic space of α:

|ψk〉 = |ψα
C〉,

|ψk−1〉 = Gα
k−1(|ψk〉),

...

|ψ1〉 = Gα
1 (|ψ2〉).

In this framework, the notion of classical tautology can be then defined in the expected
way.

Definition 4.4 (Classical tautology) A formula α is a classical tautology iff p(|ψ1〉) = 1,
where |ψ1〉 is the output of the quantum-classical truth table (|ψk〉, . . . , |ψ1〉) of α.

Example 4.1 The noncontradiction law α = ¬∧

(q,¬q, f) (which is not generally valid
in quantum computational logics) is a quantum-classical tautology. We have: Valα =
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{|110〉, |000〉}, and nα = 2. The quantum-classical truth table of α is the following sequence
of quregisters:

|ψ4〉 = |ψα
C〉 = 1√

2
|110〉 + 1√

2
|000〉,

|ψ3〉 = (I (1) ⊗ NOT(1) ⊗ I (1))(|ψ4〉) = 1√
2
|100〉 + 1√

2
|010〉,

|ψ2〉 = T(1,1,1)(|ψ3〉) = 1√
2
|100〉 + 1√

2
|010〉,

|ψ1〉 = NOT(3)(|ψ2〉) = 1√
2
|101〉 + 1√

2
|011〉,

whence, p(|ψ1〉) = 1.

Interestingly enough, our definition of quantum-classical truth table could not be given
in the framework of the compositional semantics. For, by definition, the classical truth-value
assignment system |ψα

C〉 is not a factorized state.
Using quantum-classical truth tables seems to represent the most natural way for a quan-

tum computer to calculate classical tautologies. The quantum-classical truth table of a clas-
sical formula is here described as the “time-evolution” of a pure state (living in the semantic
space of our formula), while the probability of being true is calculated as a quantum prob-
ability. One could say that such a reconstruction permits us to justify the classical logical
world by means of “quantum computational eyes”.

5 Looking for Abstract Holistic Structures

To what extent can the holistic version of quantum computational semantics provide a math-
ematical formalism for a theory of meanings, where holistic and contextual features play a
relevant role?

As is well known, human perception like thinking seems to be essentially synthetic. We
never perceive an object by scanning it point by point. We instead form right away a Gestalt,
i.e. a global idea of it. Rational activity, as well, seems to be essentially based on gestaltic
patterns. As an example, we can refer to the chess-game. Since the total number of possible
games is finite, the games could be divided into three sets: (1) the set of all games won by
white. (2) the set of all games won by black. (3) the set of all games ending in a draw. Why
could not a fantastic computer of the white player always choose from the first set?

A strong human player certainly must perform some rapid calculations, but above all he
must be able first to perceive a Gestalt of the position, and then to assess by experience
the probabilities of its different issues. Some time ago, the famous computer Deep Blue has
beaten the world champion Gary Kasparov. Soon after the game, Kasparov is said to have
protested because he suspected “something human” having taken place in the strategy of
Deep Blue. Did Kasparov have a hunch of any “gestaltic phenomenon”?

Gestalt-thinking cannot be adequately represented in the framework of classical seman-
tics, which is basically analytical and compositional: the meaning of a compound expres-
sion is always determined by the meanings of its parts. At the same time, meanings are
non-ambiguous and sharp.
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All this renders classical semantics hardly applicable to an adequate analysis of natural
languages and of artistic contexts, where holistic and ambiguous features seem to play a rel-
evant role. As a significant example, we often mention the final verse of the poem L’Infinito
by Giacomo Leopardi:

E ’l naufragar m’è dolce in questo mare
(And drowning in this sea is sweet to me).

Here, the poetic result seems to be essentially connected with the following semantic rela-
tion: the meanings of the component expressions “naufragar” (drowning), “dolce” (sweet),
“mare” (sea) do not correspond here to the most common meanings. By the way, there is
no sea in Recanati, Leopardi’s native village which the poem refers to. However the usual
meanings of our expressions are somehow present and ambiguously correlated with the
metaphorical meanings that are evoked by the whole poem. Needless to say, this represents
a quite typical semantic situation in poetry. Also musical compositions are concerned with
meanings that are intrinsically holistic, contextual and ambiguous.

In the holistic quantum computational semantics the following conditions hold:

(1) global meanings (which may correspond to a Gestalt) are essentially vague, because
they leave semantically undecided many relevant properties of the objects under inves-
tigation;

(2) any global meaning determines some partial meanings, which are generally vaguer than
the global one;

(3) meanings (Gestalten) can be generally represented as superpositions of meanings, pos-
sibly associated to probability-values;

(4) meanings are dealt with as intrinsically dynamic objects.

In spite of its appealing features, the present version of the quantum computational se-
mantics is strongly “Hilbert-space dependent”. This certainly represents a shortcoming for
all applications, where real and complex numbers do not generally play any significant role
(as happens, for instance, in the case of natural and of artistic languages).

Is it sensible to look for an abstract quantum computational semantics? We sketch here
only a first basic step in this direction: the definition of abstract quregister structure. In
this framework, abstract quregisters are identified with some special objects (not necessar-
ily living in a Hilbert space), while gates are reversible functions that transform quregisters
into quregisters. In order to stress the relation between abstract and concrete quregister-
structures, we will use the familiar ket-notation also for abstract quregisters. From an in-
tuitive point of view, abstract quregisters represent pieces of information that are generally
uncertain, while (abstract) registers are special examples of quregisters that stock a certain
information. Any (abstract) quregister is associated to a given length n, and lives in a sub-
domain Q(n) of the domain Q of all possible quregisters. The preorder relation 	 is here
primitive and has the following intuitive interpretation: |ψ〉 	 |ϕ〉 iff the information en-
coded by |ϕ〉 is “closer to the truth” than the information encoded by |ψ〉. Another primitive
relation, called quconsistency, permits us to define an abstract notion of superposition.

Definition 5.1 (Abstract quregister structure) An abstract quregister structure is a system

〈Q,♣,	,Not,
√
Not,T, |0〉, |1〉〉,

where the following conditions hold:

(1) Q is the set of all abstract quregisters (briefly, quregisters), indicated by |ψ〉, |ϕ〉, . . . .
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(a) Q = ⋃

n≥1 Q(n), where Q(n) is the set of all quregisters of length n, indicated by
|ψ〉(n), |ϕ〉(n), . . . .

(b) The Cartesian product Q(m) × Q(n) is embeddable into Q(m+n). We indicate by
|ψ〉(m) ⊗ |ϕ〉(n) the element of Q(m+n) that corresponds to the pair (|ψ〉(m), |ϕ〉(n)).
We have: |ψ〉(m) ⊗ (|ϕ〉(n) ⊗ |χ〉(p)) = (|ψ〉(m) ⊗ |ϕ〉(n)) ⊗ |χ〉(p).

(2) For any n ≥ 1, R(n) is the set of all registers of length n. The elements of R(n) are
represented as sequences |x1, . . . , xn〉, where xi ∈ {0,1}. The set R(1) = {|0〉, |1〉} is
called the set of the two abstract bits.
(a) R(n) ⊆ Q(n);
(b) R(m+n) is in one-to-one correspondence with the Cartesian product R(m) × R(n).

We indicate by |x1, . . . , xm, y1, . . . , yn〉 the register in R(m+n) that corresponds to
the pair (|x1, . . . , xm〉, |y1, . . . , yn〉).

(3) For any n ≥ 1, ♣ is a map that associates to n a binary reflexive and symmetric relation
♣n(called quconsistency) that may hold between quregisters of length n.
(a) |x1, . . . , xn〉♣n|y1, . . . , yn〉 � |x1, . . . , xn〉 = |y1, . . . , yn〉;
(b) any quregister of length n is quconsistent with at least one register of length n. Let

Reg(|ψ〉(n)) = {|x1, . . . xn〉 : |x1, . . . xn〉♣n|ψ〉(n)}. We say that |ψ〉n is a superposi-
tion of the elements of Reg(|ψ〉(n)).

(4) 	 is a preorder relation on Q. This permits one to define the following equivalence
relation:

|ψ〉 ≡ |ϕ〉 := |ψ〉 	 |ϕ〉 and |ϕ〉 	 |ψ〉.
(5) Registers satisfy the following conditions:

(a) |x1, . . . , xm〉 	 |y1, . . . , yn,1〉;
(b) |x1, . . . , xm,0〉 	 |y1, . . . , yn〉.

(6) If |1〉 	 |x1, . . . , xn〉 for any register |x1, . . . , xn〉 ∈ Reg(|ψ〉(n)), then |1〉 	 |ψ〉(n).
(7) Not,

√
Not, T are maps that assume as values abstract logical gates (briefly, gates).

By gate on Q(n) we mean a map G(n) that satisfies the following conditions:
(a) G(n) is a bijection on Q(n);
(b) |x1, . . . , xn〉♣n|ψ〉(n) � G(n)(|x1, . . . , xn〉)♣nG(n)(|ψ〉(n));
(c) ≡ is a congruence with respect to G(n).
Condition (a) guarantees that gates are reversible logical operations, while (b) repre-
sents an abstract linearity requirement.

(8) For any n ≥ 1, Not associates to n the gate Not(n) (defined on Q(n)) that satisfies the
following conditions:
(a) Not(n)(|x1, . . . , xn〉) ≡ |x1, . . . , xn−1,1 − xn〉;
(b) Not(n)(Not(n)(|ψ〉(n))) ≡ |ψ〉(n).

(9) For any n ≥ 1,
√
Not associates to n the gate

√
Not

(n)
(defined on Q(n)) that satisfies

the following conditions:

(a)
√
Not

(n)
(|x1, . . . , xn〉) ≡ |x1, . . . , xn−1〉 ⊗ √

Not
(1)

(|xn〉);
(b)

√
Not

(n)
(
√
Not

(n)
(|ψ〉(n))) ≡ Not(n)(|ψ〉(n)).

(c)
√
Not

(n)
(|x1, . . . , xn〉)♣n|x1, . . . , xn〉; √

Not
(n)

(|x1, . . . , xn〉)♣n|x1, . . . ,1 − xn〉.
(10) For any m,n ≥ 1, T associates to the triplet (m,n,1) the gate T(m,n,1), defined on

Q(m+n+1). We put:

And(|ψ〉(m), |ϕ〉(n)) := T(m,n,1)(|ψ〉(m) ⊗ |ϕ〉(n) ⊗ |0〉);
Or(|ψ〉(m), |ϕ〉(n)) := Not(And(Not(|ψ〉(m),Not(|ϕ〉(n)))).

The following conditions hold:
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(a) T(m,n,1)(|x1, . . . ,xm,y1, . . . ,yn,z〉 ≡ |x1, . . . ,xm,y1, . . . ,yn,xm · yn � z〉,
where � is the sum modulo 2.

(b) And(|ψ〉, |ϕ〉) ≡ And(|ϕ〉, |ψ〉) (commutativity).
(c) And{|ψ〉,And(|ϕ〉, |χ〉)} ≡ And{And(|ψ〉, |ϕ〉), |χ〉} (associativity).
(d) And{|ψ〉,Or(|ϕ〉, |χ〉)} 	 Or{And(|ψ〉, |ϕ〉),And(|ψ〉, |χ〉)} (semidistributiv-

ity).

(e)
√
Not

(1)|1〉 	 √
Not

(m+n+1)
( T(m,n,1)(|ψ(m)〉 ⊗ |ϕ(m)〉 ⊗ |0〉)) 	 √

Not
(1)|0〉.

One can easily show that the notion of abstract quregister structure represents a “good”
abstraction from Hilbert-space quregisters. Consider the concrete structure

〈Q,♣,	,Not,
√
Not,T, |0〉, |1〉〉,

where:

• Q = ⋃

n≥1 Q(⊗n
C

2) is the set of all concrete quregisters;
• ♣n is defined as follows.

(1) For any |ψ〉(n) = ∑

i ci |xi1 , . . . , xin〉,
|ψ〉(n)♣n|x1, . . . , xn〉 iff for some ci �= 0, |x1, . . . , xn〉 = |xi1 , . . . , xin〉.

(2) |ψ〉(n)♣n|ϕ〉(n) iff there exists a register |x1, . . . , xn〉 such that

|ψ〉(n)♣n|x1, . . . , xn〉 and |ϕ〉(n)♣n|x1, . . . , xn〉.
• the relation 	, the gates Not,

√
Not, T and the two bits |0〉, |1〉 are defined according to

the definitions given in Sect. 1.

This structure satisfies our definition of abstract quregister structure.

References

1. Dalla Chiara, M.L., Giuntini, R.: Quantum logics. In: Gabbay, G., Guenthner, F. (eds.) Handbook of
Philosophical Logic, vol. VI, pp. 129–228. Kluwer, Dordrecht (2002)

2. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer, Dordrecht (2004)
3. Dalla Chiara, M.L., Giuntini, R., Leporini, R.: Quantum Computational Logics. A Survey. In: Hendricks,

V., Malinowski, J. (eds.) Trends in Logic. 50 Years of Studia Logica, pp. 229–271. Kluwer, Dordrecht
(2003)

4. Dalla Chiara, M.L., Giuntini, R., Leporini, R.: Logics from quantum computation. Int. J. Quantum Inf. 3,
293–337 (2005)

5. Dalla Chiara, M.L., Giuntini, R., Leporini, R.: A holistic quantum computational semantics. Nat. Comput.,
10.1007/s11047-006-9020-x, 1–20 (2006). ISSN: 1567-7818 (Print) 1572-9796 (Online)

6. Dalla Chiara, M.L., Giuntini, R., Gudder, S., Leporini, R.: Quantum computational semantics on Fock
space. Int. J. Theor. Phys. 44, 2219–2230 (2005)

7. Deutsch, D., Ekert, A., Lupacchini, R.: Machines, logic and quantum physics. Bull. Symb. Log. 3, 265–
283 (2000)

8. Gudder, S.: Quantum computational logic. Int. J. Theor. Phys. 42, 39–47 (2003)

http://dx.doi.org/10.1007/s11047-006-9020-x

	Quantum Computational Logics and Possible Applications
	Abstract
	Introduction
	Quantum Trees
	Compositional and Holistic Quantum Computational Semantics
	A Quantum Computational Description of Classical Truth-Tables
	Looking for Abstract Holistic Structures
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


